1 module dcrypt.blockcipher.serpent; 2 3 import dcrypt.blockcipher.blockcipher; 4 import dcrypt.bitmanip; 5 6 /// Test serpent engine. Test vectors generated with BouncyCastle implementation. 7 unittest { 8 9 string[] keys = [ 10 x"01010101010101010101010101010101", 11 x"0101010101010101010101010101010101010101", 12 x"010101010101010101010101010101010101010101010101", 13 x"01010101010101010101010101010101010101010101010101010101", 14 x"0101010101010101010101010101010101010101010101010101010101010101", 15 ]; 16 string[] plains = [ 17 x"01010101010101010101010101010101", 18 x"01010101010101010101010101010101", 19 x"01010101010101010101010101010101", 20 x"01010101010101010101010101010101", 21 x"01010101010101010101010101010101", 22 ]; 23 string[] ciphers = [ 24 x"63fc6f65f3f71e6d99d981be6de30751", 25 x"bc794e453a1b0bfd2475f2a40bf842ba", 26 x"292a63c6d15db833f38b40b153cc303c", 27 x"80808b4b6e93b6ff929a6105b508acbe", 28 x"4827fcff24454cf889642a5bb12397ec", 29 ]; 30 31 SerpentEngine t = new SerpentEngine(); 32 blockCipherTest(t, keys, plains, ciphers); 33 } 34 35 alias BlockCipherWrapper!Serpent SerpentEngine; 36 37 /** 38 * Serpent is a 128-bit 32-round block cipher with variable key lengths, 39 * including 128, 192 and 256 bit keys conjectured to be at least as 40 * secure as three-key triple-DES. 41 * <p> 42 * Serpent was designed by Ross Anderson, Eli Biham and Lars Knudsen as a 43 * candidate algorithm for the NIST AES Quest.> 44 * <p> 45 * For full details see the <a href="http://www.cl.cam.ac.uk/~rja14/serpent.html">The Serpent home page</a> 46 */ 47 @safe 48 public struct Serpent 49 { 50 51 public enum name = "Serpent"; 52 public enum blockSize = 16; 53 54 private { 55 enum ROUNDS = 32; 56 enum uint PHI = 0x9E3779B9; // (sqrt(5) - 1) * 2**31 57 58 uint X0, X1, X2, X3; // registers 59 uint[(ROUNDS + 1) * 4] wKey; 60 61 bool encrypting; 62 bool initialized = false; 63 } 64 65 /// Params: 66 /// forEncryption = `false`: decrypt, `true`: encrypt 67 /// userKey = Secret key. 68 /// iv = Not used. 69 void start(bool forEncryption, in ubyte[] userKey, in ubyte[] iv = null) nothrow @nogc 70 { 71 this.encrypting = forEncryption; 72 makeWorkingKey(userKey); 73 initialized = true; 74 } 75 76 public uint processBlock(in ubyte[] input, ubyte[] output) nothrow @nogc 77 in { 78 assert(initialized, "Serpent engine not initialized"); 79 assert(blockSize<=input.length, "input buffer too short"); 80 assert(blockSize<=output.length, "output buffer too short"); 81 } 82 body { 83 if (encrypting) 84 { 85 encryptBlock(input, output); 86 } 87 else 88 { 89 decryptBlock(input, output); 90 } 91 92 return blockSize; 93 } 94 95 public void reset() pure nothrow @nogc 96 { 97 } 98 99 private: 100 /** 101 * Expand a user-supplied key material into a session key. 102 * 103 * Params: 104 * key The user-key bytes (multiples of 4) to use. 105 */ 106 private void makeWorkingKey(in ubyte[] key) nothrow @nogc 107 in { 108 assert(key.length % 4 == 0, "key must be a multiple of 4 bytes"); 109 } 110 body { 111 // 112 // pad key to 256 bits 113 // 114 uint[16] kPad; 115 size_t off = 0; 116 uint length = 0; 117 118 for (off = key.length - 4; off > 0; off -= 4) 119 { 120 kPad[length++] = fromBigEndian!uint(key[off..off+4]); 121 } 122 123 if (off == 0) 124 { 125 kPad[length++] = fromBigEndian!uint(key[0..4]); 126 if (length < 8) 127 { 128 kPad[length] = 1; 129 } 130 } 131 else 132 { 133 assert(false, "key must be a multiple of 4 bytes"); 134 } 135 136 // 137 // expand the padded key up to 33 x 128 bits of key material 138 // 139 enum amount = (ROUNDS + 1) * 4; 140 alias wKey w; 141 142 // 143 // compute w0 to w7 from w-8 to w-1 144 // 145 foreach (i;8..16) 146 { 147 kPad[i] = rotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11); 148 } 149 150 w[0..8] = kPad[8..16]; 151 152 // 153 // compute w8 to w136 154 // 155 foreach(i;8..amount) 156 { 157 w[i] = rotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11); 158 } 159 160 // 161 // create the working keys by processing w with the Sbox and IP 162 // 163 sb3(w[0], w[1], w[2], w[3]); 164 w[0] = X0; 165 w[1] = X1; 166 w[2] = X2; 167 w[3] = X3; 168 sb2(w[4], w[5], w[6], w[7]); 169 w[4] = X0; 170 w[5] = X1; 171 w[6] = X2; 172 w[7] = X3; 173 sb1(w[8], w[9], w[10], w[11]); 174 w[8] = X0; 175 w[9] = X1; 176 w[10] = X2; 177 w[11] = X3; 178 sb0(w[12], w[13], w[14], w[15]); 179 w[12] = X0; 180 w[13] = X1; 181 w[14] = X2; 182 w[15] = X3; 183 sb7(w[16], w[17], w[18], w[19]); 184 w[16] = X0; 185 w[17] = X1; 186 w[18] = X2; 187 w[19] = X3; 188 sb6(w[20], w[21], w[22], w[23]); 189 w[20] = X0; 190 w[21] = X1; 191 w[22] = X2; 192 w[23] = X3; 193 sb5(w[24], w[25], w[26], w[27]); 194 w[24] = X0; 195 w[25] = X1; 196 w[26] = X2; 197 w[27] = X3; 198 sb4(w[28], w[29], w[30], w[31]); 199 w[28] = X0; 200 w[29] = X1; 201 w[30] = X2; 202 w[31] = X3; 203 sb3(w[32], w[33], w[34], w[35]); 204 w[32] = X0; 205 w[33] = X1; 206 w[34] = X2; 207 w[35] = X3; 208 sb2(w[36], w[37], w[38], w[39]); 209 w[36] = X0; 210 w[37] = X1; 211 w[38] = X2; 212 w[39] = X3; 213 sb1(w[40], w[41], w[42], w[43]); 214 w[40] = X0; 215 w[41] = X1; 216 w[42] = X2; 217 w[43] = X3; 218 sb0(w[44], w[45], w[46], w[47]); 219 w[44] = X0; 220 w[45] = X1; 221 w[46] = X2; 222 w[47] = X3; 223 sb7(w[48], w[49], w[50], w[51]); 224 w[48] = X0; 225 w[49] = X1; 226 w[50] = X2; 227 w[51] = X3; 228 sb6(w[52], w[53], w[54], w[55]); 229 w[52] = X0; 230 w[53] = X1; 231 w[54] = X2; 232 w[55] = X3; 233 sb5(w[56], w[57], w[58], w[59]); 234 w[56] = X0; 235 w[57] = X1; 236 w[58] = X2; 237 w[59] = X3; 238 sb4(w[60], w[61], w[62], w[63]); 239 w[60] = X0; 240 w[61] = X1; 241 w[62] = X2; 242 w[63] = X3; 243 sb3(w[64], w[65], w[66], w[67]); 244 w[64] = X0; 245 w[65] = X1; 246 w[66] = X2; 247 w[67] = X3; 248 sb2(w[68], w[69], w[70], w[71]); 249 w[68] = X0; 250 w[69] = X1; 251 w[70] = X2; 252 w[71] = X3; 253 sb1(w[72], w[73], w[74], w[75]); 254 w[72] = X0; 255 w[73] = X1; 256 w[74] = X2; 257 w[75] = X3; 258 sb0(w[76], w[77], w[78], w[79]); 259 w[76] = X0; 260 w[77] = X1; 261 w[78] = X2; 262 w[79] = X3; 263 sb7(w[80], w[81], w[82], w[83]); 264 w[80] = X0; 265 w[81] = X1; 266 w[82] = X2; 267 w[83] = X3; 268 sb6(w[84], w[85], w[86], w[87]); 269 w[84] = X0; 270 w[85] = X1; 271 w[86] = X2; 272 w[87] = X3; 273 sb5(w[88], w[89], w[90], w[91]); 274 w[88] = X0; 275 w[89] = X1; 276 w[90] = X2; 277 w[91] = X3; 278 sb4(w[92], w[93], w[94], w[95]); 279 w[92] = X0; 280 w[93] = X1; 281 w[94] = X2; 282 w[95] = X3; 283 sb3(w[96], w[97], w[98], w[99]); 284 w[96] = X0; 285 w[97] = X1; 286 w[98] = X2; 287 w[99] = X3; 288 sb2(w[100], w[101], w[102], w[103]); 289 w[100] = X0; 290 w[101] = X1; 291 w[102] = X2; 292 w[103] = X3; 293 sb1(w[104], w[105], w[106], w[107]); 294 w[104] = X0; 295 w[105] = X1; 296 w[106] = X2; 297 w[107] = X3; 298 sb0(w[108], w[109], w[110], w[111]); 299 w[108] = X0; 300 w[109] = X1; 301 w[110] = X2; 302 w[111] = X3; 303 sb7(w[112], w[113], w[114], w[115]); 304 w[112] = X0; 305 w[113] = X1; 306 w[114] = X2; 307 w[115] = X3; 308 sb6(w[116], w[117], w[118], w[119]); 309 w[116] = X0; 310 w[117] = X1; 311 w[118] = X2; 312 w[119] = X3; 313 sb5(w[120], w[121], w[122], w[123]); 314 w[120] = X0; 315 w[121] = X1; 316 w[122] = X2; 317 w[123] = X3; 318 sb4(w[124], w[125], w[126], w[127]); 319 w[124] = X0; 320 w[125] = X1; 321 w[126] = X2; 322 w[127] = X3; 323 sb3(w[128], w[129], w[130], w[131]); 324 w[128] = X0; 325 w[129] = X1; 326 w[130] = X2; 327 w[131] = X3; 328 } 329 330 /** 331 * Encrypt one block of plaintext. 332 * 333 */ 334 private void encryptBlock(in ubyte[] input, ubyte[] output) nothrow @nogc 335 { 336 X3 = fromBigEndian!uint(input[0..4]); 337 X2 = fromBigEndian!uint(input[4..8]); 338 X1 = fromBigEndian!uint(input[8..12]); 339 X0 = fromBigEndian!uint(input[12..16]); 340 341 sb0(wKey[0] ^ X0, wKey[1] ^ X1, wKey[2] ^ X2, wKey[3] ^ X3); 342 LT(); 343 sb1(wKey[4] ^ X0, wKey[5] ^ X1, wKey[6] ^ X2, wKey[7] ^ X3); 344 LT(); 345 sb2(wKey[8] ^ X0, wKey[9] ^ X1, wKey[10] ^ X2, wKey[11] ^ X3); 346 LT(); 347 sb3(wKey[12] ^ X0, wKey[13] ^ X1, wKey[14] ^ X2, wKey[15] ^ X3); 348 LT(); 349 sb4(wKey[16] ^ X0, wKey[17] ^ X1, wKey[18] ^ X2, wKey[19] ^ X3); 350 LT(); 351 sb5(wKey[20] ^ X0, wKey[21] ^ X1, wKey[22] ^ X2, wKey[23] ^ X3); 352 LT(); 353 sb6(wKey[24] ^ X0, wKey[25] ^ X1, wKey[26] ^ X2, wKey[27] ^ X3); 354 LT(); 355 sb7(wKey[28] ^ X0, wKey[29] ^ X1, wKey[30] ^ X2, wKey[31] ^ X3); 356 LT(); 357 sb0(wKey[32] ^ X0, wKey[33] ^ X1, wKey[34] ^ X2, wKey[35] ^ X3); 358 LT(); 359 sb1(wKey[36] ^ X0, wKey[37] ^ X1, wKey[38] ^ X2, wKey[39] ^ X3); 360 LT(); 361 sb2(wKey[40] ^ X0, wKey[41] ^ X1, wKey[42] ^ X2, wKey[43] ^ X3); 362 LT(); 363 sb3(wKey[44] ^ X0, wKey[45] ^ X1, wKey[46] ^ X2, wKey[47] ^ X3); 364 LT(); 365 sb4(wKey[48] ^ X0, wKey[49] ^ X1, wKey[50] ^ X2, wKey[51] ^ X3); 366 LT(); 367 sb5(wKey[52] ^ X0, wKey[53] ^ X1, wKey[54] ^ X2, wKey[55] ^ X3); 368 LT(); 369 sb6(wKey[56] ^ X0, wKey[57] ^ X1, wKey[58] ^ X2, wKey[59] ^ X3); 370 LT(); 371 sb7(wKey[60] ^ X0, wKey[61] ^ X1, wKey[62] ^ X2, wKey[63] ^ X3); 372 LT(); 373 sb0(wKey[64] ^ X0, wKey[65] ^ X1, wKey[66] ^ X2, wKey[67] ^ X3); 374 LT(); 375 sb1(wKey[68] ^ X0, wKey[69] ^ X1, wKey[70] ^ X2, wKey[71] ^ X3); 376 LT(); 377 sb2(wKey[72] ^ X0, wKey[73] ^ X1, wKey[74] ^ X2, wKey[75] ^ X3); 378 LT(); 379 sb3(wKey[76] ^ X0, wKey[77] ^ X1, wKey[78] ^ X2, wKey[79] ^ X3); 380 LT(); 381 sb4(wKey[80] ^ X0, wKey[81] ^ X1, wKey[82] ^ X2, wKey[83] ^ X3); 382 LT(); 383 sb5(wKey[84] ^ X0, wKey[85] ^ X1, wKey[86] ^ X2, wKey[87] ^ X3); 384 LT(); 385 sb6(wKey[88] ^ X0, wKey[89] ^ X1, wKey[90] ^ X2, wKey[91] ^ X3); 386 LT(); 387 sb7(wKey[92] ^ X0, wKey[93] ^ X1, wKey[94] ^ X2, wKey[95] ^ X3); 388 LT(); 389 sb0(wKey[96] ^ X0, wKey[97] ^ X1, wKey[98] ^ X2, wKey[99] ^ X3); 390 LT(); 391 sb1(wKey[100] ^ X0, wKey[101] ^ X1, wKey[102] ^ X2, wKey[103] ^ X3); 392 LT(); 393 sb2(wKey[104] ^ X0, wKey[105] ^ X1, wKey[106] ^ X2, wKey[107] ^ X3); 394 LT(); 395 sb3(wKey[108] ^ X0, wKey[109] ^ X1, wKey[110] ^ X2, wKey[111] ^ X3); 396 LT(); 397 sb4(wKey[112] ^ X0, wKey[113] ^ X1, wKey[114] ^ X2, wKey[115] ^ X3); 398 LT(); 399 sb5(wKey[116] ^ X0, wKey[117] ^ X1, wKey[118] ^ X2, wKey[119] ^ X3); 400 LT(); 401 sb6(wKey[120] ^ X0, wKey[121] ^ X1, wKey[122] ^ X2, wKey[123] ^ X3); 402 LT(); 403 sb7(wKey[124] ^ X0, wKey[125] ^ X1, wKey[126] ^ X2, wKey[127] ^ X3); 404 405 toBigEndian!uint(wKey[131] ^ X3, output[0..4]); 406 toBigEndian!uint(wKey[130] ^ X2, output[4..8]); 407 toBigEndian!uint(wKey[129] ^ X1, output[8..12]); 408 toBigEndian!uint(wKey[128] ^ X0, output[12..16]); 409 } 410 411 /** 412 * Decrypt one block of ciphertext. 413 * 414 */ 415 private void decryptBlock(in ubyte[] input, ubyte[] output) nothrow @nogc 416 { 417 X3 = wKey[131] ^ fromBigEndian!uint(input[0..4]); 418 X2 = wKey[130] ^ fromBigEndian!uint(input[4..8]); 419 X1 = wKey[129] ^ fromBigEndian!uint(input[8..12]); 420 X0 = wKey[128] ^ fromBigEndian!uint(input[12..16]); 421 422 ib7(X0, X1, X2, X3); 423 X0 ^= wKey[124]; 424 X1 ^= wKey[125]; 425 X2 ^= wKey[126]; 426 X3 ^= wKey[127]; 427 inverseLT(); 428 ib6(X0, X1, X2, X3); 429 X0 ^= wKey[120]; 430 X1 ^= wKey[121]; 431 X2 ^= wKey[122]; 432 X3 ^= wKey[123]; 433 inverseLT(); 434 ib5(X0, X1, X2, X3); 435 X0 ^= wKey[116]; 436 X1 ^= wKey[117]; 437 X2 ^= wKey[118]; 438 X3 ^= wKey[119]; 439 inverseLT(); 440 ib4(X0, X1, X2, X3); 441 X0 ^= wKey[112]; 442 X1 ^= wKey[113]; 443 X2 ^= wKey[114]; 444 X3 ^= wKey[115]; 445 inverseLT(); 446 ib3(X0, X1, X2, X3); 447 X0 ^= wKey[108]; 448 X1 ^= wKey[109]; 449 X2 ^= wKey[110]; 450 X3 ^= wKey[111]; 451 inverseLT(); 452 ib2(X0, X1, X2, X3); 453 X0 ^= wKey[104]; 454 X1 ^= wKey[105]; 455 X2 ^= wKey[106]; 456 X3 ^= wKey[107]; 457 inverseLT(); 458 ib1(X0, X1, X2, X3); 459 X0 ^= wKey[100]; 460 X1 ^= wKey[101]; 461 X2 ^= wKey[102]; 462 X3 ^= wKey[103]; 463 inverseLT(); 464 ib0(X0, X1, X2, X3); 465 X0 ^= wKey[96]; 466 X1 ^= wKey[97]; 467 X2 ^= wKey[98]; 468 X3 ^= wKey[99]; 469 inverseLT(); 470 ib7(X0, X1, X2, X3); 471 X0 ^= wKey[92]; 472 X1 ^= wKey[93]; 473 X2 ^= wKey[94]; 474 X3 ^= wKey[95]; 475 inverseLT(); 476 ib6(X0, X1, X2, X3); 477 X0 ^= wKey[88]; 478 X1 ^= wKey[89]; 479 X2 ^= wKey[90]; 480 X3 ^= wKey[91]; 481 inverseLT(); 482 ib5(X0, X1, X2, X3); 483 X0 ^= wKey[84]; 484 X1 ^= wKey[85]; 485 X2 ^= wKey[86]; 486 X3 ^= wKey[87]; 487 inverseLT(); 488 ib4(X0, X1, X2, X3); 489 X0 ^= wKey[80]; 490 X1 ^= wKey[81]; 491 X2 ^= wKey[82]; 492 X3 ^= wKey[83]; 493 inverseLT(); 494 ib3(X0, X1, X2, X3); 495 X0 ^= wKey[76]; 496 X1 ^= wKey[77]; 497 X2 ^= wKey[78]; 498 X3 ^= wKey[79]; 499 inverseLT(); 500 ib2(X0, X1, X2, X3); 501 X0 ^= wKey[72]; 502 X1 ^= wKey[73]; 503 X2 ^= wKey[74]; 504 X3 ^= wKey[75]; 505 inverseLT(); 506 ib1(X0, X1, X2, X3); 507 X0 ^= wKey[68]; 508 X1 ^= wKey[69]; 509 X2 ^= wKey[70]; 510 X3 ^= wKey[71]; 511 inverseLT(); 512 ib0(X0, X1, X2, X3); 513 X0 ^= wKey[64]; 514 X1 ^= wKey[65]; 515 X2 ^= wKey[66]; 516 X3 ^= wKey[67]; 517 inverseLT(); 518 ib7(X0, X1, X2, X3); 519 X0 ^= wKey[60]; 520 X1 ^= wKey[61]; 521 X2 ^= wKey[62]; 522 X3 ^= wKey[63]; 523 inverseLT(); 524 ib6(X0, X1, X2, X3); 525 X0 ^= wKey[56]; 526 X1 ^= wKey[57]; 527 X2 ^= wKey[58]; 528 X3 ^= wKey[59]; 529 inverseLT(); 530 ib5(X0, X1, X2, X3); 531 X0 ^= wKey[52]; 532 X1 ^= wKey[53]; 533 X2 ^= wKey[54]; 534 X3 ^= wKey[55]; 535 inverseLT(); 536 ib4(X0, X1, X2, X3); 537 X0 ^= wKey[48]; 538 X1 ^= wKey[49]; 539 X2 ^= wKey[50]; 540 X3 ^= wKey[51]; 541 inverseLT(); 542 ib3(X0, X1, X2, X3); 543 X0 ^= wKey[44]; 544 X1 ^= wKey[45]; 545 X2 ^= wKey[46]; 546 X3 ^= wKey[47]; 547 inverseLT(); 548 ib2(X0, X1, X2, X3); 549 X0 ^= wKey[40]; 550 X1 ^= wKey[41]; 551 X2 ^= wKey[42]; 552 X3 ^= wKey[43]; 553 inverseLT(); 554 ib1(X0, X1, X2, X3); 555 X0 ^= wKey[36]; 556 X1 ^= wKey[37]; 557 X2 ^= wKey[38]; 558 X3 ^= wKey[39]; 559 inverseLT(); 560 ib0(X0, X1, X2, X3); 561 X0 ^= wKey[32]; 562 X1 ^= wKey[33]; 563 X2 ^= wKey[34]; 564 X3 ^= wKey[35]; 565 inverseLT(); 566 ib7(X0, X1, X2, X3); 567 X0 ^= wKey[28]; 568 X1 ^= wKey[29]; 569 X2 ^= wKey[30]; 570 X3 ^= wKey[31]; 571 inverseLT(); 572 ib6(X0, X1, X2, X3); 573 X0 ^= wKey[24]; 574 X1 ^= wKey[25]; 575 X2 ^= wKey[26]; 576 X3 ^= wKey[27]; 577 inverseLT(); 578 ib5(X0, X1, X2, X3); 579 X0 ^= wKey[20]; 580 X1 ^= wKey[21]; 581 X2 ^= wKey[22]; 582 X3 ^= wKey[23]; 583 inverseLT(); 584 ib4(X0, X1, X2, X3); 585 X0 ^= wKey[16]; 586 X1 ^= wKey[17]; 587 X2 ^= wKey[18]; 588 X3 ^= wKey[19]; 589 inverseLT(); 590 ib3(X0, X1, X2, X3); 591 X0 ^= wKey[12]; 592 X1 ^= wKey[13]; 593 X2 ^= wKey[14]; 594 X3 ^= wKey[15]; 595 inverseLT(); 596 ib2(X0, X1, X2, X3); 597 X0 ^= wKey[8]; 598 X1 ^= wKey[9]; 599 X2 ^= wKey[10]; 600 X3 ^= wKey[11]; 601 inverseLT(); 602 ib1(X0, X1, X2, X3); 603 X0 ^= wKey[4]; 604 X1 ^= wKey[5]; 605 X2 ^= wKey[6]; 606 X3 ^= wKey[7]; 607 inverseLT(); 608 ib0(X0, X1, X2, X3); 609 610 toBigEndian!uint(X3 ^ wKey[3], output[0..4]); 611 toBigEndian!uint(X2 ^ wKey[2], output[4..8]); 612 toBigEndian!uint(X1 ^ wKey[1], output[8..12]); 613 toBigEndian!uint(X0 ^ wKey[0], output[12..16]); 614 } 615 616 /** 617 * The sboxes below are based on the work of Brian Gladman and 618 * Sam Simpson, whose original notice appears below. 619 * <p> 620 * For further details see: 621 * http://fp.gladman.plus.com/cryptography_technology/serpent/ 622 */ 623 624 /* Partially optimised Serpent S Box boolean functions derived */ 625 /* using a recursive descent analyser but without a full search */ 626 /* of all subtrees. This set of S boxes is the result of work */ 627 /* by Sam Simpson and Brian Gladman using the spare time on a */ 628 /* cluster of high capacity servers to search for S boxes with */ 629 /* this customised search engine. There are now an average of */ 630 /* 15.375 terms per S box. */ 631 /* */ 632 /* Copyright: Dr B. R Gladman (gladman@seven77.demon.co.uk) */ 633 /* and Sam Simpson (s.simpson@mia.co.uk) */ 634 /* 17th December 1998 */ 635 /* */ 636 /* We hereby give permission for information in this file to be */ 637 /* used freely subject only to acknowledgement of its origin. */ 638 639 /** 640 * S0 - { 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } - 15 terms. 641 */ 642 nothrow @nogc { 643 void sb0(uint a, uint b, uint c, uint d) 644 { 645 uint t1 = a ^ d; 646 uint t3 = c ^ t1; 647 uint t4 = b ^ t3; 648 X3 = (a & d) ^ t4; 649 uint t7 = a ^ (b & t1); 650 X2 = t4 ^ (c | t7); 651 uint t12 = X3 & (t3 ^ t7); 652 X1 = (~t3) ^ t12; 653 X0 = t12 ^ (~t7); 654 } 655 656 /** 657 * InvSO - {13, 3,11, 0,10, 6, 5,12, 1,14, 4, 7,15, 9, 8, 2 } - 15 terms. 658 */ 659 void ib0(uint a, uint b, uint c, uint d) 660 { 661 uint t1 = ~a; 662 uint t2 = a ^ b; 663 uint t4 = d ^ (t1 | t2); 664 uint t5 = c ^ t4; 665 X2 = t2 ^ t5; 666 uint t8 = t1 ^ (d & t2); 667 X1 = t4 ^ (X2 & t8); 668 X3 = (a & t4) ^ (t5 | X1); 669 X0 = X3 ^ (t5 ^ t8); 670 } 671 672 /** 673 * S1 - {15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } - 14 terms. 674 */ 675 void sb1(uint a, uint b, uint c, uint d) 676 { 677 uint t2 = b ^ (~a); 678 uint t5 = c ^ (a | t2); 679 X2 = d ^ t5; 680 uint t7 = b ^ (d | t2); 681 uint t8 = t2 ^ X2; 682 X3 = t8 ^ (t5 & t7); 683 uint t11 = t5 ^ t7; 684 X1 = X3 ^ t11; 685 X0 = t5 ^ (t8 & t11); 686 } 687 688 /** 689 * InvS1 - { 5, 8, 2,14,15, 6,12, 3,11, 4, 7, 9, 1,13,10, 0 } - 14 steps. 690 */ 691 void ib1(uint a, uint b, uint c, uint d) 692 { 693 uint t1 = b ^ d; 694 uint t3 = a ^ (b & t1); 695 uint t4 = t1 ^ t3; 696 X3 = c ^ t4; 697 uint t7 = b ^ (t1 & t3); 698 uint t8 = X3 | t7; 699 X1 = t3 ^ t8; 700 uint t10 = ~X1; 701 uint t11 = X3 ^ t7; 702 X0 = t10 ^ t11; 703 X2 = t4 ^ (t10 | t11); 704 } 705 706 /** 707 * S2 - { 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } - 16 terms. 708 */ 709 void sb2(uint a, uint b, uint c, uint d) 710 { 711 uint t1 = ~a; 712 uint t2 = b ^ d; 713 uint t3 = c & t1; 714 X0 = t2 ^ t3; 715 uint t5 = c ^ t1; 716 uint t6 = c ^ X0; 717 uint t7 = b & t6; 718 X3 = t5 ^ t7; 719 X2 = a ^ ((d | t7) & (X0 | t5)); 720 X1 = (t2 ^ X3) ^ (X2 ^ (d | t1)); 721 } 722 723 /** 724 * InvS2 - {12, 9,15, 4,11,14, 1, 2, 0, 3, 6,13, 5, 8,10, 7 } - 16 steps. 725 */ 726 void ib2(uint a, uint b, uint c, uint d) 727 { 728 uint t1 = b ^ d; 729 uint t2 = ~t1; 730 uint t3 = a ^ c; 731 uint t4 = c ^ t1; 732 uint t5 = b & t4; 733 X0 = t3 ^ t5; 734 uint t7 = a | t2; 735 uint t8 = d ^ t7; 736 uint t9 = t3 | t8; 737 X3 = t1 ^ t9; 738 uint t11 = ~t4; 739 uint t12 = X0 | X3; 740 X1 = t11 ^ t12; 741 X2 = (d & t11) ^ (t3 ^ t12); 742 } 743 744 /** 745 * S3 - { 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } - 16 terms. 746 */ 747 void sb3(uint a, uint b, uint c, uint d) 748 { 749 uint t1 = a ^ b; 750 uint t2 = a & c; 751 uint t3 = a | d; 752 uint t4 = c ^ d; 753 uint t5 = t1 & t3; 754 uint t6 = t2 | t5; 755 X2 = t4 ^ t6; 756 uint t8 = b ^ t3; 757 uint t9 = t6 ^ t8; 758 uint t10 = t4 & t9; 759 X0 = t1 ^ t10; 760 uint t12 = X2 & X0; 761 X1 = t9 ^ t12; 762 X3 = (b | d) ^ (t4 ^ t12); 763 } 764 765 /** 766 * InvS3 - { 0, 9,10, 7,11,14, 6,13, 3, 5,12, 2, 4, 8,15, 1 } - 15 terms 767 */ 768 void ib3(uint a, uint b, uint c, uint d) 769 { 770 uint t1 = a | b; 771 uint t2 = b ^ c; 772 uint t3 = b & t2; 773 uint t4 = a ^ t3; 774 uint t5 = c ^ t4; 775 uint t6 = d | t4; 776 X0 = t2 ^ t6; 777 uint t8 = t2 | t6; 778 uint t9 = d ^ t8; 779 X2 = t5 ^ t9; 780 uint t11 = t1 ^ t9; 781 uint t12 = X0 & t11; 782 X3 = t4 ^ t12; 783 X1 = X3 ^ (X0 ^ t11); 784 } 785 786 /** 787 * S4 - { 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } - 15 terms. 788 */ 789 void sb4(uint a, uint b, uint c, uint d) 790 { 791 uint t1 = a ^ d; 792 uint t2 = d & t1; 793 uint t3 = c ^ t2; 794 uint t4 = b | t3; 795 X3 = t1 ^ t4; 796 uint t6 = ~b; 797 uint t7 = t1 | t6; 798 X0 = t3 ^ t7; 799 uint t9 = a & X0; 800 uint t10 = t1 ^ t6; 801 uint t11 = t4 & t10; 802 X2 = t9 ^ t11; 803 X1 = (a ^ t3) ^ (t10 & X2); 804 } 805 806 /** 807 * InvS4 - { 5, 0, 8, 3,10, 9, 7,14, 2,12,11, 6, 4,15,13, 1 } - 15 terms. 808 */ 809 void ib4(uint a, uint b, uint c, uint d) 810 { 811 uint t1 = c | d; 812 uint t2 = a & t1; 813 uint t3 = b ^ t2; 814 uint t4 = a & t3; 815 uint t5 = c ^ t4; 816 X1 = d ^ t5; 817 uint t7 = ~a; 818 uint t8 = t5 & X1; 819 X3 = t3 ^ t8; 820 uint t10 = X1 | t7; 821 uint t11 = d ^ t10; 822 X0 = X3 ^ t11; 823 X2 = (t3 & t11) ^ (X1 ^ t7); 824 } 825 826 /** 827 * S5 - {15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } - 16 terms. 828 */ 829 void sb5(uint a, uint b, uint c, uint d) 830 { 831 uint t1 = ~a; 832 uint t2 = a ^ b; 833 uint t3 = a ^ d; 834 uint t4 = c ^ t1; 835 uint t5 = t2 | t3; 836 X0 = t4 ^ t5; 837 uint t7 = d & X0; 838 uint t8 = t2 ^ X0; 839 X1 = t7 ^ t8; 840 uint t10 = t1 | X0; 841 uint t11 = t2 | t7; 842 uint t12 = t3 ^ t10; 843 X2 = t11 ^ t12; 844 X3 = (b ^ t7) ^ (X1 & t12); 845 } 846 847 /** 848 * InvS5 - { 8,15, 2, 9, 4, 1,13,14,11, 6, 5, 3, 7,12,10, 0 } - 16 terms. 849 */ 850 void ib5(uint a, uint b, uint c, uint d) 851 { 852 uint t1 = ~c; 853 uint t2 = b & t1; 854 uint t3 = d ^ t2; 855 uint t4 = a & t3; 856 uint t5 = b ^ t1; 857 X3 = t4 ^ t5; 858 uint t7 = b | X3; 859 uint t8 = a & t7; 860 X1 = t3 ^ t8; 861 uint t10 = a | d; 862 uint t11 = t1 ^ t7; 863 X0 = t10 ^ t11; 864 X2 = (b & t10) ^ (t4 | (a ^ c)); 865 } 866 867 /** 868 * S6 - { 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } - 15 terms. 869 */ 870 void sb6(uint a, uint b, uint c, uint d) 871 { 872 uint t1 = ~a; 873 uint t2 = a ^ d; 874 uint t3 = b ^ t2; 875 uint t4 = t1 | t2; 876 uint t5 = c ^ t4; 877 X1 = b ^ t5; 878 uint t7 = t2 | X1; 879 uint t8 = d ^ t7; 880 uint t9 = t5 & t8; 881 X2 = t3 ^ t9; 882 uint t11 = t5 ^ t8; 883 X0 = X2 ^ t11; 884 X3 = (~t5) ^ (t3 & t11); 885 } 886 887 /** 888 * InvS6 - {15,10, 1,13, 5, 3, 6, 0, 4, 9,14, 7, 2,12, 8,11 } - 15 terms. 889 */ 890 void ib6(uint a, uint b, uint c, uint d) 891 { 892 uint t1 = ~a; 893 uint t2 = a ^ b; 894 uint t3 = c ^ t2; 895 uint t4 = c | t1; 896 uint t5 = d ^ t4; 897 X1 = t3 ^ t5; 898 uint t7 = t3 & t5; 899 uint t8 = t2 ^ t7; 900 uint t9 = b | t8; 901 X3 = t5 ^ t9; 902 uint t11 = b | X3; 903 X0 = t8 ^ t11; 904 X2 = (d & t1) ^ (t3 ^ t11); 905 } 906 907 /** 908 * S7 - { 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 } - 16 terms. 909 */ 910 void sb7(uint a, uint b, uint c, uint d) 911 { 912 uint t1 = b ^ c; 913 uint t2 = c & t1; 914 uint t3 = d ^ t2; 915 uint t4 = a ^ t3; 916 uint t5 = d | t1; 917 uint t6 = t4 & t5; 918 X1 = b ^ t6; 919 uint t8 = t3 | X1; 920 uint t9 = a & t4; 921 X3 = t1 ^ t9; 922 uint t11 = t4 ^ t8; 923 uint t12 = X3 & t11; 924 X2 = t3 ^ t12; 925 X0 = (~t11) ^ (X3 & X2); 926 } 927 928 /** 929 * InvS7 - { 3, 0, 6,13, 9,14,15, 8, 5,12,11, 7,10, 1, 4, 2 } - 17 terms. 930 */ 931 void ib7(uint a, uint b, uint c, uint d) 932 { 933 uint t3 = c | (a & b); 934 uint t4 = d & (a | b); 935 X3 = t3 ^ t4; 936 uint t6 = ~d; 937 uint t7 = b ^ t4; 938 uint t9 = t7 | (X3 ^ t6); 939 X1 = a ^ t9; 940 X0 = (c ^ t7) ^ (d | X1); 941 X2 = (t3 ^ X1) ^ (X0 ^ (a & X3)); 942 } 943 944 /** 945 * Apply the linear transformation to the register set. 946 */ 947 void LT() 948 { 949 uint x0 = rotateLeft(X0, 13); 950 uint x2 = rotateLeft(X2, 3); 951 uint x1 = X1 ^ x0 ^ x2 ; 952 uint x3 = X3 ^ x2 ^ x0 << 3; 953 954 X1 = rotateLeft(x1, 1); 955 X3 = rotateLeft(x3, 7); 956 X0 = rotateLeft(x0 ^ X1 ^ X3, 5); 957 X2 = rotateLeft(x2 ^ X3 ^ (X1 << 7), 22); 958 } 959 960 /** 961 * Apply the inverse of the linear transformation to the register set. 962 */ 963 void inverseLT() 964 { 965 uint x2 = rotateRight(X2, 22) ^ X3 ^ (X1 << 7); 966 uint x0 = rotateRight(X0, 5) ^ X1 ^ X3; 967 uint x3 = rotateRight(X3, 7); 968 uint x1 = rotateRight(X1, 1); 969 X3 = x3 ^ x2 ^ x0 << 3; 970 X1 = x1 ^ x0 ^ x2; 971 X2 = rotateRight(x2, 3); 972 X0 = rotateRight(x0, 13); 973 } 974 } 975 }