ge means group element.
Here the group is the set of pairs (x,y) of field elements (see fe.h) satisfying -x^2 + y^2 = 1 + d x^2y^2 where d = -121665/121666.
Representations: ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T ge_precomp (Duif): (y+x,y-x,2dxy) */ /// ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/
See Implementation
ge means group element.
Here the group is the set of pairs (x,y) of field elements (see fe.h) satisfying -x^2 + y^2 = 1 + d x^2y^2 where d = -121665/121666.
Representations: ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T ge_precomp (Duif): (y+x,y-x,2dxy) */ /// ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/